# Prevalence and Characterization of Community Acquired Methicillin Resistant Staphylococcus aureus Colonization in High-Risk Individuals in Toronto, Canada.

MOUNT SINAL HOSPITAL > Complex

B Borgundvaag PhD, MD¹, T. Svoboda MD, PhD², A. McGeer, MD³, B. Willey, B Sc³, A. Rostos, B Sc³ P. Gnanasuntharam, B Sc³ A. Tyler B.Sc<sup>3</sup>, V. Porter B Sc<sup>3</sup>, N. Kreiswirth B Sc<sup>3</sup>

<sup>1</sup> The Schwartz/Reisman Emergency Centre, Mount Sinai Hospital, <sup>2</sup>The Centre for Research on Inner City Health, St. Michaels Hospital <sup>3</sup>Mount Sinai Hospital/University Health network Department of Microbiology, Toronto, Ontario, Canada.



#### bstract:

introduction pain; community-acquired methicilism-resistant Staphylococcus sureus (CA-MSR) and seriesgal das a common pain; community-acquired methicilism-resistant Staphylococcus sureus (CA-MSR) Aneste day MRSA has now replaced methicilin-susceptible S. arreus (MSSA) as the primary cause of SSTIT. Three are several commonly cited risks for CA-MSSA intection, yet little is known about colonization rates in high-risk individuals. Behavior is the 11 and Aurust 18 7017 205 consession make residents of a Toronto community.

delbrodas: Belween July 10 and August 18, 2007; 295 consenting male residents of a Toronto community letter convolution from the firest scale and any visibly open areas. Swabs was enriched and selectively cultured for for MRSA and MSAA, which rese identified using standard methods MRSA which was expected by Small PEGE, and SCOREC type and presence produced by PCR, was determined by PCR, and ACC and ACC

of PPU, was determined by PPCR.

Reauths: Overall: 110 (27%) and 12 (4.1%) or residents screened positive for MSSA and MRSA.

Reportingly, MRSA were of 5 distinct types: the largest cleans included 6 residents positive from 11 sites.

Including a post-frostike bot infection. This unusually resistant (R, R to ofindamy on and fusibility cluster was cleasly related to the PV-positive community strain. CMRSA-10 (USA-200). If we other residents curried the typest CMRSA-0 (USA-200) are an responsible for the surge of CAMRSA-10 (WSA-200). The other fields from 6-1 with the common control of the

(USA-600) also carrying the community SCCmec-IVa cassette.

Conclusion: The most common isolate of CA-MRSA found in this cohort of high-risk individuals was an unusually dug resistant variant of the most common strain of CA-MRSA. The implications of colonization with this strain are yet to be determined.

### troduction:

Methicilin-resistant Slaphylococcus aureus (MRSA) emerged in Canada in the early 1980's; however it was primarily a nosocomial infection and has only recently emerged as a community-associated infection (CA-MRSA). S. aureus is frequently associated with skin and soft tissue infections (SSTI's), and in many parts of North America. CA-MRSA is replacing methicilin-sensitive S. aureus (MSSA) as the most common cause of SSTI's. CA-MRSA has predominately been associated with a single strain, which is characteristically PVL-positive, msrA-positive, and belonging to the CMRSA-10/USA300 pulsed field type.

Several risk factors, including homelessness, have been associated with CA-MRSA infection. In 2003, surveillance screening in ~300 homeless men in a Toronto shelter identified no individuals colonized with CA-MRSA. A notable increase in CA-MRSA symptomatic infections in Toronto emergency departments has prompted us to re-examine the colonization rates in this population.

The purpose of this study was to determine the CA-MRSA colonization rate

#### 7

| Demographic Information                        | Number (%)     | er (%)         |
|------------------------------------------------|----------------|----------------|
|                                                | MRSA -         | MRSA +         |
|                                                | (N=284)        | (N=12)         |
| Age (median, range)                            | 48 yrs (25-83) | 48yrs (33-69)  |
| First Nations/Aboriginal ethnicity             | 10 (3%)        | 3 (25%)**      |
| Admitted to hospital in last 12 months         | 80 (28%)       | 6 (50%)*       |
| ED visit in last 12 months                     | 131 (46%)      | 6 (50%)        |
| Skin infection in last 12 months               | 30 (11%)       | 3 (25%)*       |
| History of MRSA colonization                   | 3 (1.0%)       | 0              |
| Artibiotics within the last 3 months           | 45 (15%)       | 1 (9%)         |
| Lived in another shelter in the last 12 months | 83 (29%)       | 3 (25%)        |
| Lived on the street in the last 12 months      | 71 (25%)       | 4 (33%)        |
| Years homeless (median, range)                 | 2.0 yrs (0-40) | 1.5 yrs (0-17) |
| Share personal items with other men at shelter | 28 (10%)       | 1 (8%)         |
| Gay/Lesbian/Bisexual                           | 13 (5%)        | 0              |
| IV Drug user                                   | 60 (21%)       | 1 (8%)         |
| HIV positive                                   | 7 (2%)         | 0              |
| Chronic skin conditions (e.g. psoriasis)       | 30 (10%)       | 1 (8%)         |
| Prison in the last year                        | 67 (24%)       | 4 (33%)        |

#### MACHOOR.

Approval for this prospective observational study was obtained from the Research Ethics Board's of both Mt Sinai and St Michaels Hospital's. Between July 10, and August 18, 2007, adult male residents of a large (500 bed) shelter for homeless men were asked to participate.

Consenting individuals had swabs taken from their anterior nares and axilia as well as from any open wound, if reported by the resident. Swabs were placed in Starswab II Charcoal transport medium (Starplex Scientific Inc, Toronto, Ontario), and held at room temperature until processing (done the evening following swab collection). Swabs were processed by placing them in 2 mi of BHI broth (Oxoid Napean ON) for overnight incubation at 3°C, and then plating in Mannitol Sati agar (MSA; Difco) for selective isolation of MSSA, and Denim Blue agar (DBA) for MRSA detection the following morning. DBA plates were incubated (in darkness) for at least 24 hours, and MSA were incubated for at least 48 hours, before being discarded as negative.

Characterization of S. aureus isolates (antibiotic susceptibility testing, molecular characterization by PCR for *nuc*, *pvl* and *SCCmec* type, chromosomal typing by pulsed field gel electrophoresis), was according to standard laboratory methods.

Table 2

| Total No. MSSA<br>No (%)<br>295 110 (37.3)<br>599 139 (23.2)<br>295 93 (31.5)<br>295 45 (15.3)<br>9 1 (11.1) | Swab location and type | Residents Screened | Swabs Collected | Nasai Swabs | Axillary Swabs | Wound Swabs |
|--------------------------------------------------------------------------------------------------------------|------------------------|--------------------|-----------------|-------------|----------------|-------------|
| MSSA<br>No (%)<br>110 (37.3)<br>139 (23.2)<br>93 (31.5)<br>45 (15.3)                                         | Total No.              | 295                | 599             | 295         | 295            | ဖ           |
|                                                                                                              | No (%)                 | 110 (37.3)         | 139 (23.2)      | 93 (31.5)   | 45 (15.3)      | 1 (11.1)    |

#### Reculte.

Between July 10 and August 18, 2007, 295 male homeless shelter residents consented to participate. A total of 599 swabs were collected, including 295 nasal swabs, 295 axilla swabs, and 9 wound swabs.

Overall, 122 (41%) of residents grew S. aureus from one or more specimens. Or these, 110 (37%) grew MSSA from 139 specimens, and 12 (4.1%) grew MRSA from 18 specimens. Of the 12 MRSA positive residents, 8 were colonized with CMRSA-10/USA300. Of these CMRSA-10/USA300 positive individuals, 4 grew MRSA from both axilla and nasal swabs, 4 were only positive on nasal swabs, and only 1 resident had an isolated axilla positive swab. One of 9 (11%) suppurative wound swabs in this population were positive for MRSA, and this individuals nasal and axillary swabs were also MRSA positive.

The only characteristic associated with MRSA colonization was aborignate ethnicity (25% vs 3%, P=0.01; Table 1). Residents who were MRSA positive were somewhat more likely to have been hospitalized in the last year (50% vs 26%, P=.10) and to report having a skin infection in the prior 12 months (25% vs 11%, P=.13)

MRSA isolates in this population belonged to 5 distinct clusters. Specific details regarding lineage and resistance patterns are shown in Table 3. Of note, the largest cluster comprised 6 individuals, and was closely related to the epidemic community (CMRSA-10/USA300) strain, but was unusually drug resistant with constitutive ermA/C-mediated resistance to clindamycin rather than the more typically associated msrA gene and clindamycin susceptibility. This strain also displayed a high level of fusidic acid resistance (MIC >8mg/L) resulting from point mutations in the chromosomal EF-G region of the fusA gene, suggesting exposure to fusidic acid nother than the counter in Canada.

#### Table 3

| MRSA Cluster      | SmalPFGE      | SCCmec Type  | Resistance                  |
|-------------------|---------------|--------------|-----------------------------|
| No. of Residents  | Canadian-Type | Association  | Profile* (gene)             |
| (No. of Isolates) | CDC-Type      | PVL gene     | Associated with Strain Type |
| 1.6 (11)          | CMRSA-10      | Na           | -ß-lactams                  |
|                   | USA300        | (community)  | -ciprofloxacin              |
|                   |               | PVL-positive | -erythromycin               |
|                   |               |              | -clindamycin (ermA/C)       |
|                   |               |              | -fusidic acid (fusA)        |
| 2. 2 (2)          | CMRSA-10      | Na           | -B-lactams                  |
|                   | USA300        | (community)  | -ciprofloxacin              |
|                   |               | PVL-positive | -erythromycin (msrA)        |
| 3. 2 (3)          | CMRSA-2       | Nc           | -ß-lactams only             |
|                   | USA800        | (community)  |                             |
|                   |               | PVL-negative |                             |
| 4. 1 (1)          | CMRSA-2       |              | -ß-lactams                  |
|                   | USA100        | (nosocomial) | -ciprofloxacin              |
|                   |               | PVL-negative | -erythromycin               |
|                   |               |              | -clindamycin (ermA/C)       |
| 5. 1(1)           | CMRSA-1       | Na           | -ß-lactams                  |
|                   | USA600        | (community)  | -ciprofloxacin              |
|                   |               | PVL-negative | -erythromycin (msrA)        |

\*No MRSA isolates were resistant to tetracycline or trimethoprim/sulfamethoxazole

## Conclusions:

Five separate clusters of MRSA derived from 3 distinct genetic lineages were identified during this 2007 survey. This was in contrast to **no** MRSA being identified in a similar survey performed at this same Toronto homeless shelter in 2003.

All but one of these MRSA clusters carried SCCmec-IV type cassettes, indicating that

their acquisition was most likely in the community.

Of concern is that the predominant strain was a variant of the epidemic CMRSA-10/USA300, that had not only acquired an *ermA/C*-type gene that enabled its resistance to clindarnycin, a drug commonly used in the treatment of community infections, but it had also developed resistance to the over-the-counter antibiotic fusidic acid. While this cluster was centered around an individual with a suppurative foot infection, the implications of colonization with this strain remains to be determined.

## **Future Directions**

The association between colonization with MRSA strains, and the development of clinical infection is not well understood. Tracking health outcomes in the study population is presently underway.

A repeat analysis of this population will be conducted in the upcoming months to determine if patients remain colonized, and to determine if antibiotic resistance patterns have changed.

# Acknowledgements

We are grateful for the help of the following individuals, without whom this project would not have been possible:

Michelle Loftus - who supervised the collection of the clinical specimens Susan Finn (Starplex Scientific) for kindly donating specimen swabs Brian Kemp (Oxoid) for generously providing the Denim Blue MRSA detection media Norm Neison for making the culture media.